

第十届磁约束聚变理论与模拟会议 珠海,2022年10月28日-10月31日

基于球形环的氢硼聚变途径

谢华生,董家齐,冯开明,顾翔,黄贤礼,姜欣辰,李颖颖,李直,刘兵,刘<mark>鹤,刘文军,罗迪,</mark> 石跃江,宋绍栋,宋显明,孙恬恬,谭沐芝,王明远,王雪韵,王嵎民,杨<mark>圆明,尹刚,赵寒月</mark>, 周庆,刘敏胜⁺,及新奥聚变团队

> 1. 新奥科技发展有限公司 廊坊 065001 2. 河北省紧凑型聚变重点实验室 廊坊 065001

新奥聚变技术研发中心介绍(ENN-FTRC)

新奥集团

 成立于1989年,民营企业, 现有员工超4万人,2021年
 经营收入1606亿元,年利润
 约100亿元。

新奥能源研究院

 成立于2007年,在低碳能源研 发上取得了举世瞩目的成果, 部分研发成果已进入产业化;
 重点研发方向:球形环氢硼聚 变技术、深层地热技术、其他 无碳能源技术。

新奥聚变技术研发中心

- 成立于2018年2月,现有研发人员130人, 博士学历占40%;
- > 河北省紧凑型重点实验室;
- > 探索有望20-30年实现紧凑型商用聚变能
 源的可能路径;
- ➢ 当前实验装置: 球形托卡马克EXL-50, 场反位形EFRC0;
- > 2022年7月, 确定球形环氢硼聚变路线。

新奥聚变目标是清洁化、低成本能源

氢硼是可商业化、无中子聚变的最优原料

- 1. 基于新奥商业化聚变目标,反应**原料优选氢硼,可满足环保的需求**
- 2. 氢硼原料较为丰富、易获取,廉价
- 3. 氢硼作为反应原料,产生的alpha粒子可直接发电

核反应	主要优点	主要缺点	原材料价格 (元/克)	2050年消 耗量	当前存量
1. 氘氚D-T	最容易实现	高能中子壁材料防护 , 氚 增殖 (T贵)	氚(T):1800万	3000吨氚	约10千克,需增殖
2. 氘氘D-D	反应条件相对容易 , 原 材料廉价	依然存在较高能量中子, 峰值反应截面低*	氘(D):30	1万吨氘	45万亿吨
3. 氘氦D- ³ He	产物中子少 , 中子能量 低	³ He贵,有D-D等副反应	氦3(³ He):100万	3000吨He3	需核反应产生或月 球上开采**
4. 氢硼p- ¹¹ B	中子极少 , 原材料极廉 价 , alpha粒子可直接 发电	反应条件苛刻	硼11(¹¹ B):5	1万吨B11	1.7亿吨

- D-T聚变的高能中子防护、壁材料(目前没有能用于商用聚变堆的壁材料)和氚增殖(目前TBR尚很难超过1.2, 对聚变包层T回收率要求极高)是最大挑战,短期内难解决
- ▶ D-T、D-D和D-³He放射性,原材料受到管制

氢硼聚变难度大,但理论上可行

p-11B聚变理论可行,尽管难度极大

10²² 10²¹ 利利 住能 10²⁰ Ř $(m^{-3}s)$ 高约 10¹⁹ 是 密度乘能量约束时间 $n_i \tau_E$ 10¹⁸ 10¹⁷ 提高加热效率 10 50 100 500 0.5 5 10 离子温度 T_i (keV)

技术上还需提高约束和降低劳森判据条件

100

0

200

Effective temperature T (keV)

300

400

- ▶ 热平衡劳森判据 , p-¹¹B聚变理论上可行
- ▶ 所需定量技术指标(忽略磁场导致的回旋辐射时) $T_i \sim 200 \ keV, \ n_i \tau_E > 10^{22} m^{-3} s$
- 新的反应截面或反应率研究,或者非热平衡,可能使得 劳森判据条件更低
- ▶ 提高三乘积--能量约束时间、温度、密度

500

以球形环发展氢硼聚变是实现新奥聚变目标当前最优的选择

球形环氢硼聚变是一条全新的商业化聚变路线

物理设计模型的程序流程

针对新奥装置设计

球形环设计模型校验

ITER参数	文献Costley15 (Tokamak energy)	新奧模型
中心离子温度T _i (keV)	25	25
中心密度n _e (m ⁻³)	0.77e20	0.77e20
约束时间 $\tau_{E}(s)$	2.0	2.0
磁压比β	0.02	0.02
磁场B ₀ (T)	5.18	5.18
大半径R ₀ (m)	6.35	6.35
环径比A	3.43	3.43
等离子体电流I _p (MA)	9.2	9.2
加热功率P _{heat} (MW)	70	70.4
聚变功率P _{fus} (MW)	350	356
氘氚聚变增益Q	5	5.1

针对ITER参数算例:

• 输入参数相同,输出参数与英国 Tokamak Energy的模型相差2%以内

表明模型可靠

利用模型定量分析球形环与传统托卡马克

参数	托卡马克	卡马克 依据和判断		依据和判断
平均离子温度 T_i (keV)	33	JET和TFTR芯部温度已超过40keV	33	没有原则性困难
平均密度 n_e (10 ²⁰ m ⁻³)	1.65	C-Mod平均密度已达到8	0.66	没有原则性困难
约束时间 $\tau_E(s)$	5	比ITER定标律高3.4倍	19.3	低于ST定标律要求
磁压比β	0.038	可实现	0.32	远低于ARIES-ST设计
磁场B _{T0} (T)	12	与SPARC相同	2.6	参考future ST设计
大半径 R_0 (m)	4	比ITER/小2.2m	3.2	参考ARIES-ST设计
聚变增益Q	3.2	仍可优化	30	仍可优化
环径比4	3.5	比SPARC略大,有利于TF线圈设计	1.7	参考future ST设计
n_0/n_G	1	低于密度极限	0.76	远低于密度极限
q	3.27	满足>2的要求	2.16	满足>2的要求
拉长比床	2.5	可行	3.3	低于ARIES-ST设计值
归一化β _N	3.45	比12/A=3.43稍高	7.16	低于ARIES-ST设计值
聚变功率P _{fus} (MW)	241	经济性待评估	107	经济性待评估
加热功率P _{heat} (MW)	74.5	接近ITER加热功率	3.56	可实现
等离子体电流 I_p (MA)	15	有待评估	22	低于ARIES-ST设计值
н	(98)3.41	比ITER定标律高3.4倍	(ST)0.98	低于ST定标律要求
热离子模 (Ti=4Te)	已有接近此温度的托卡马克热离子模结果 (关键技术)			
反应率提升5倍	理论上具备可能性 , 待进一步研究 (关键技术)			

■ 共同点

降低韧致辐射(热离子模)和提升
 氢硼反应率是两种方法实现氢硼聚
 变共有的关键技术,同时需求高电
 流驱动和能量约束时间

■ 优点

٠

在球形环能量约束定标律验证的条件下,球形环不需要强磁场也能达到氢硼聚变增益30,而托卡马克必须要求强磁场。球形环反应堆的成本远低于托卡马克

■ 缺点

球形环当前实现的等离子温度与能量约束低于托卡马克,需要在高参数下验证

球形环氢硼聚变路线关键问题

FNN新奥

> 一级问题互相耦合,单个技术突破越大,其他技术的要求可以相应降低

球形环氢硼聚变路线概图

球形环各代装置设计参数

参数	EXL-50	EXL-50U	EHL2	EHL3-a	EHL3-b(氢硼实验堆)
平均 / 中心离子温度T _i (keV)	-/1.0	-/6.0	-/30	-/70	46.2/140
平均 / 中心密度n _e (m ⁻³)	-/2.0e19	-/1.0e20	-/1.3e20	-/1.5e20	0.83/2.5e20
约束时间 _{TE} (s)	-	0.07	0.5	5	25
磁压比β	-	0.1	0.11	0.18	0.24
磁场B ₀ (T)	0.46	1.2@R=0.6m	3.0	4	4
大半径R ₀ (m)	0.58	0.6-0.8	1.05	2.0	3.2
环径比A	1.4	1.5-1.85	1.85	1.8	1.7
加热功率P _{heat} (MW)	3.0	>3.0	17	60	6.83+133
等离子体电流I _p (MA)	0.5	0.9	3.0	10	25
热离子模T _i /T _e	-	1.5	3	3	4

🏠 ENN 新興

*注:玄龙50-U及下代装置(EHL2)设计参数略高于设定的物理目标下限,最终设计值可能会有变化。 14

EXL-50U及EHL2物理目标

EXL-50U | 期

EHL2

 高离子温度下热离子模(T_i/T_e≥1.5, T_i≥ 1.0keV)

- 3. 球形环能量约束定标律(H_{ST}~1.0, τ_E ≥ 0.03s)
- 1. 高离子电子温度比(T_i/T_e≥2)

2. 验证ST高的能量约束时间定标律(H_{ST}≥ 0.5, $\tau_{\rm E} \ge 0.5$ s)

- 3. 高效电流驱动(I_p ≥ 3MA)
- 4. 高离子温度(T_{i0} ≥ 20keV)
- 高磁比压(β_T ≥ 0.1)

玄龙-50升级到玄龙-50U示意图

世界上参数最高的球形环用于氢硼聚变能研发,硬件初投资40亿元

欢迎各位来新奥参观、交流、合作,共同推进聚变能源事业!

装置物理和工程设计逻辑

初步物理设计的参数将根据工程及详细的物理设计的结果进行修正

详细物理设计所需内容

详细物理设计分工

序号	任务	内容
1	平衡位形	给出平衡位形及PF线圈的设计,及初步的偏滤器位形
2	计算输运剖面	给出1.5维输运模拟的温度、密度剖面
3	宏观不稳定性分析	确定当前设计是否稳定,含破裂评估
4	电流驱动	综合评估和优化设计CS、波及其他方式的电流驱动
5	波加热	确定波频率、功率等参数
6	中性束加热	确定中性束能量、功率、注入角度
7	偏滤器物理设计	确定偏滤器初步设计,进行优化,评估热负载
8	0.5维集成模拟	给出运行模式相关信息,以确定放电是否有明显问题
9	1.5维集成模拟	进行初步1.5维集成分析,确定是否有明显问题
10	垂直不稳定性	评估垂直不稳定性,确保控制无问题
11	高能离子	评估高能离子的正负效应
12	微观不稳定性	评估微观不稳定性和湍流输运
13	加料	确定加料方式及评估可能的问题

氢硼聚变条件限定的基本参数范围

聚变增益Q>1,功率密度>0.1 MW/m³,比压<1的限定条件下,可选参数范围较窄

参数	参考范围	原因	备注	▶ 托卡马克氘氚聚
离子温度T _i	100-300keV	聚变功率与辐射功率之比最大 化		变实现条件已较 ^{洼林}
离子电子温 度比T _i /T _e	>2	压低电子辐射 , 否则无法实现 聚变能量增益	若反应率可提升 , 则该 项要求可降低	/月 疋
反应率(σv)倍 数因子	≥1,越高越好	使聚变功率超过辐射功率	可遇不可求 , 需新物理	环形坏氢硼聚受需从商业化要求
功率密度	$0.1 - 10 \text{ MW/m}^3$	经济性和可控性		倒推,首先给出
密度	$(0.5-10) \times 10^{20} \text{ m}^{-3}$	功率密度限制		会物士 初 范 国
磁场	0.1 MW/m ³ 时, $\mathbf{B}_{min} = \frac{2.9}{\sqrt{\beta}} \mathbf{T}$ 1 MW/m ³ 时, $\mathbf{B}_{min} = \frac{5.2}{\sqrt{\beta}} \mathbf{T}$	比压限制 , 高比压有利于降低 磁场要求	磁场也不宜太高 , 会导 致回旋辐射损失过大	▶ 基于此范围,再
能量约束时 间	5-50s	太低无法实现聚变增益 , 太高 将杂质聚集也无法实现增益		作详细核算

1.以上条件对任何磁约束聚变方式均需满足;2.在考虑剖面的非均匀分布时条件会略有改变

斪 ENN 新興

完整推导,参考"谢华生,《聚变能源研究的零级量》,2022"第三、四章。

物理参数设计—参数耦合示例

参数	无反应率提升	反应率提升2倍	反应率提升5倍
平均离子温度 T_i (keV)	79.2	46.2	33
平均密度n _e (10 ²⁰ m ⁻³)	0.594	0.825	0.66
约束时间 $\tau_E(s)$	45	25	19.3
磁压比β	0.19	0.24	0.32
磁场B _{T0} (T)	5	4	2.6
大半径 R_0 (m)	4	3.2	3.2
聚变增益Q	12	20	30
环径比A	1.7	1.7	1.7
n_0/n_G	0.78	0.83	0.76
安全因子q	3.46	2.21	2.16
拉长比ĸ	3	2.5	3.3
归 一化 β _N	7.37	7.16	7.16
聚变功率P _{fus} (MW)	231	133	107
加热功率P _{heat} (MW)	19.4	6.83	3.56
等离子体电流 I_p (MA)	30	25	22
H _{ST}	1	0.934	0.982
热离子模	Ti=4Te	Ti=4Te	Ti=4Te
反应率提升	无	2倍	5倍

**注:红色(关键参数) 黄色(中高风险参数) 绿色(低/无风险参数)

结论:

- 参数互相耦合,单个参数突破越大,其他参数要求可相应降低
- 任何参数的突破,可通过模型快速更新其他参数

